Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Autonomous Vehicle Control Engineering Master Programme

Curriculum

Valid from September 2018
Autonomous Vehicle Control Engineering

Master Programme start in February

<table>
<thead>
<tr>
<th>1/autumn</th>
<th>2/autumn</th>
<th>3/autumn</th>
<th>4/autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical methods
KOVBM121</td>
<td>2 0 1 4 m 3 MC VKR</td>
<td>Artificial intelligence
VAVM610</td>
<td>3 0 m 3 MC VKH</td>
</tr>
<tr>
<td>Comp localization and mapping</td>
<td>Design and integration of embedded systems</td>
<td>Traffic modeling, simulation and control</td>
<td>Machine vision
KOVAM104</td>
</tr>
<tr>
<td>Vehicle dynamics
VECM601</td>
<td>Vehicle dynamics
VAVM101</td>
<td>Machine vision
KOVAM102</td>
<td>2 0 2 m 4 MC KUT</td>
</tr>
<tr>
<td>VIMM180</td>
<td>VIMM180</td>
<td>2 0 0 4 m 3 MC EMK</td>
<td>2 0 0 m 3 MC KUT</td>
</tr>
<tr>
<td>Autonomous robots and vehicles</td>
<td>Autonomous robots and vehicles</td>
<td>Project management</td>
<td>Safety and reliability in vehicle industry
TKAM103</td>
</tr>
<tr>
<td>Automotive network and communication systems
KOVAM709</td>
<td>Compensation block</td>
<td>Automotive network and communication systems
KOVAM711</td>
<td>2 0 2 m 4 SP GT7</td>
</tr>
<tr>
<td>2 1 0 4 m 4 MC VKH</td>
<td>2 0 1 4 m 4 OC</td>
<td>2 0 0 4 m 2 SP GT7</td>
<td>3 0 0 m 4 MC GT7</td>
</tr>
<tr>
<td>Comp block</td>
<td>Automated driving systems</td>
<td>Comp block</td>
<td></td>
</tr>
</tbody>
</table>
Recommendation examples of compensation subjects

For vehicle engineer BSc

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Semester</th>
<th>Program</th>
<th>Credits</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal processing fundamentals</td>
<td>VIHIM009</td>
<td>4</td>
<td>BME</td>
<td>4</td>
<td>OC</td>
</tr>
<tr>
<td>Programming in C- and Matlab</td>
<td>KOKAM603</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
<tr>
<td>Software Development Methods and Paradigms</td>
<td>VIAUMA00</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
</tbody>
</table>

For mechanical/mechatronics engineer BSc

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Semester</th>
<th>Program</th>
<th>Credits</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal processing fundamentals</td>
<td>VIHIM009</td>
<td>4</td>
<td>BME</td>
<td>4</td>
<td>OC</td>
</tr>
<tr>
<td>Software Development Methods and Paradigms</td>
<td>VIAUMA00</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
<tr>
<td>Automotive vehicle systems</td>
<td>KOGGM712</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
</tbody>
</table>

For electrical engineer / informatics BSc

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Semester</th>
<th>Program</th>
<th>Credits</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle operation</td>
<td>KOGGM174</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
<tr>
<td>Automotive vehicle systems</td>
<td>KOGGM712</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
<tr>
<td>Vehicle mechanics fundamentals</td>
<td>KOGGM713</td>
<td>2</td>
<td>BME</td>
<td>1</td>
<td>OC</td>
</tr>
</tbody>
</table>
Course description explanation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Subject name</td>
<td>official name of the subject</td>
</tr>
<tr>
<td>2. Subject name in Hungarian</td>
<td>official name of the subject in Hungarian</td>
</tr>
</tbody>
</table>
| **3. Role** | role of the subject in the curriculum,
MC - mandatory; SP - specialization; EC - elective economics; OC - optional compensation |
| **4. Code** | Neptun code of the subject (with BME prefix) |
| **5. Evaluation type** | type of academic performance assessment, e - exam grade; m - mid-term grade |
| **6. Credits** | credit value of the subject |
| **7. Weekly contact hours** | number of weekly (term-based) teaching hours for students by lecture, practice and lab |
| **8. Curriculum** | master programs related to the subject:
A - Autonomous Vehicle Control Engineering
J - Vehicle Engineering
K - Transportation Engineering
L - Logistics Engineering |
| **9. Working hours for fulfilling the requirements of the subject** | contact hours – personal appearance at classes in a university
preparation for seminars – preparation at home for the classes
homework – preparation of homework and other assignments for the classes
reading written materials – reviewing and understanding the taken lessons at home
midterm preparation – recommended preparation time at home for the midterm test during the semester
exam preparation – recommended preparation time at home for the exam |
| **10. Department** | name of responsible department for managing the subject |
| **11. Responsible lecturer** | name of the person in charge of the subject (subject coordinator) |
| **12. Lecturers** | name of all lecturers of the subject |
| **13. Prerequisites** | predefined criteria for registering the subject |
| **14. Description of lectures** | detailed content of the lecture type course |
| **15. Description of practices** | detailed content of the practice type course |
| **16. Description of laboratory practices** | detailed content of the laboratory practice type course |
| **17. Learning outcomes** | results to achieve at the end of the learning process, grouped by competence |
| **18. Requirements** | requirements for passing the subject, aspects of performance evaluation, way to determine a grade
(obtain a signature) |
| **19. Retake and delayed completion** | opportunity for repeat/retake and delayed completion |
| **20. Learning materials** | notes, textbooks, suggested literature, recommended learning support materials in printed or electronic form |
Curriculum Supplement

All questions and conditions that regulate the study progress should be defined in this Supplement to the Curriculum. Thus, the Curriculum Supplement (curriculum appendix) contains the system of subject prerequisites, the rules for the selecting specializations, the description of the conditions for the preparation of the Master thesis and the final examination, as well as the order of the final exam.

The subject prerequisite system expresses the connections between the subjects:

- In the absence of a strong or a weak prerequisite, it is not possible to enroll in the subject, and no exceptions can be given, as it reflects the professional conditions of effective education. In the case of co-requisite subjects (simultaneous enrollment of two subjects in prerequisite connection), if the subject having a co-requisite subject is not fulfilled in the given semester, consequently the co-requisite subject also cannot be completed in that semester.
- In the absence of the recommended prerequisite, the course can be enrolled, but it should be noted that the course is preferably assumes knowledge from the recommended prerequisite subject.

1. The specific subject prerequisites are included in the subject datasheets.

2. There are no general rules for the selection of specialization and for specialization subjects.

3. Enrollment rules for the Master thesis subjects in all specializations:

The prerequisite for enrollment in the Master thesis I. course are the completion of compulsory courses covering all the basic natural scientific knowledge in the recommended curriculum (i.e. mandatory courses marked with pink background) and the collection of a minimum of 56 credits.

The prerequisite for enrollment in the Master thesis II. course are the completion of compulsory courses covering all the basic natural scientific knowledge included in the recommended curriculum (i.e. mandatory courses marked with pink background) and the collection of a minimum of 84 credits. The Master thesis I. course can be enrolled simultaneously as co-requisite, in which case the above cumulative acquired credits must be achieved by completing another subjects according to the recommended curriculum. A further condition is the completion of the 4-week internship in case of full time master study.

4. Criteria for taking the final examination:

Completion of all subjects included in the recommended curriculum, including optional subjects (all together at least 120 credits), submitting the Master thesis and, in the case of a full-time master study, fulfillment of all criterion requirements in the curriculum (4 weeks of internship).

5. Final examination order:

The final examination in front of the Final Examination Board consists of defending the Master thesis and passing oral final exams from three subjects (or subject groups). The final exam subjects (or subject groups) are assigned by the Department responsible for the specialization. The subjects must be selected partly from the professional core subjects, and from the specialization subjects, so that each subject has a minimum credit value of 3 and the knowledge of the three subjects (or subject groups) is at least 15 credits in total.
Subject description

1. **Subject name**
 Artificial Intelligence

2. **Subject name in Hungarian**
 Mesterséges intelligencia

3. **Role**
 mc

4. **Code**
 VIMIAC10

5. **Evaluation type**
 m

6. **Credits**
 3

7. **Weekly contact hours**
 3 lecture, 0 practice, 0 lab

8. **Curriculum**
 A

9. **Working hours for fulfilling the requirements of the subject**
 90 hours

 Contact hours
 42 hours

 Preparation for seminars
 14 hours

 Homework
 22 hours

 Reading written materials
 0 hours

 Midterm preparation
 12 hours

 Exam preparation
 0 hours

10. **Department**
 Department of Measurement and Information Systems

11. **Responsible lecturer**
 Dr. Pataki Béla

12. **Lecturers**
 Dr. Pataki Béla, Dr. Hullám Gábor

13. **Prerequisites**
 - (-), -;
 - (-), -;
 - (-), -;

14. **Description of lectures**

The aim of the subject is a short, yet substantial presentation of the field of artificial intelligence. The principal presented topics are:

- expressing intelligent behavior with computational models,
- analysis and application of the formal and heuristic methods of artificial intelligence,
- methods and problems of practical implementations.

The subject is intended to develop the abilities and skills of the students of informatics in the area of:

- studying novel applications of the computing,
- developing effective methods to solve computational problems,
- understanding the technological and conceptual limits of the computer science,
- intellectual understanding of the central role of the algorithm in information systems.

15. **Description of practices**

-

16. **Description of laboratory practices**

-

17. **Learning outcomes**

a) **Knowledge:**
 - Knows the possibilities of artificial intelligence and its limitations.
 - Knows the basic conceptual and mathematical foundations of intelligent systems.
 - Know the methods of intelligent system design.
 - Knows the formalization techniques of information.

b) **Skills:**
 - Is able to design an independent information processing architecture.
 - Is able to understand, model and implement learning processes.

c) **Attitude:**
 - Strives to understand the technological / conceptual constraints of computing / science.
 - Strives to understand the central role of the algorithm in IT systems.

d) **Autonomy and responsibility:**
 - Can independently develop effective methods for solving computational problems.

18. **Requirements, way to determine a grade (obtain a signature)**

Two midterm exams, with the minimum-level of 40%. The midterm result is the sum of the exams and the homework. The overall sum must reach the 40% of the maximum.

19. **Retake and delayed completion**

One Midterm exam can be retried.

20. **Learning materials**

Stuart Russell és Peter Norvig: Artificial Intelligence: A Modern Approach
1. **Subject name**: Automated driving systems

2. **Subject name in Hungarian**: Automatizált járműirányítási rendszerek

3. **Role**: mc

4. **Code**: KOGGM707

5. **Evaluation type**: e

6. **Credits**: 5

7. **Weekly contact hours**: 2 lecture 0 practice 2 lab

8. **Curriculum**: A

9. **Working hours for fulfilling the requirements of the subject**: 150 hours

 - Contact hours: 56 hours
 - Preparation for seminars: 0 hours
 - Midterm preparation: 0 hours
 - Exam preparation: 20 hours
 - Reading written materials: 24 hours
 - Homework: 50 hours

10. **Department**: Department of Automotive Technologies

11. **Responsible lecturer**: Dr. Szalay Zsolt

12. **Lecturers**: Dr. Tihanyi Viktor, Gubovits Attila

13. **Prerequisites**:
 - (-), -
 - (-), -
 - (-), -

14. **Description of lectures**

 The target is to present driver assistant systems and automated driving functions. The levels of automation according to SAE. Brief overview about vehicle dynamics. Driver assistance system overview on the stabilization level. Typical DAS systems, like AEBS, LDW, LKA available at present vehicles. Outlook on future advanced driver assistance systems at higher automation levels.

 Topics included: SAE automation levels
 - Basic vehicle dynamic model, lateral and longitudinal, ABS, ASR, ESP
 - Automated emergency braking, Lane departure warning, Lane keep assist, Lane change assist, Turning assist, Tempomat, adaptive cruise control, Park assist, Traffic jam assist, Highway Assist Pilot, Platooning

15. **Description of practices**

16. **Description of laboratory practices**

 The lab enables the practical implementation of individual student work. Some of the systems presented in the presentation are also presented in practice.

17. **Learning outcomes**

 a) Knowledge:
 - Know the SAE levels of vehicle automation.
 - Know the advanced driving support systems used today.
 - Knows the structure of ABS, ESP, ASR.
 - Is familiar with automated track recognition, figuration, bandwidth and bandwidth systems.
 - Is familiar with parking assist and traffic jam assistance systems.

 b) Skills:
 - Is able to understand the automated functions of driving support systems.
 - Is able to design the basic elements of an automated driving support system under planning.

 c) Attitude:
 - Motivated to learn about advanced driver assistance systems.
 - Motivated to participate in improvements to the automation level of vehicles.

 d) Autonomy and responsibility:
 - Responsible for the work done.

18. **Requirements, way to determine a grade (obtain a signature)**

 Signature: fulfilment of individual homework. Verbal exam. Final grade is average of homework (50%) and exam (50%).

19. **Retake and delayed completion**

 Delayed completion of individual homework.

20. **Learning materials**

 Lecture Notes
1. **Subject name**: Automated vehicle design project
2. **Subject name in Hungarian**: Autonóm jármű projektfeladat
3. **Role**: mc
4. **Code**: KOGGM710
5. **Evaluation type**: e
6. **Credits**: 6
7. **Weekly contact hours**: 2 lecture, 0 practice, 2 lab
8. **Curriculum**: A
9. **Working hours for fulfilling the requirements of the subject**: 180 hours
 - Contact hours: 56 hours
 - Preparation for seminars: 0 hours
 - Homework: 64 hours
 - Reading materials: 40 hours
 - Midterm preparation: 0 hours
 - Exam preparation: 20 hours
10. **Department**: Department of Automotive Technologies
11. **Responsible lecturer**: Dr. Gáspár Péter
12. **Lecturers**: Dr. Szalay Zsolt, Dr. Bécsi Tamás, Dr. Aradi Szilárd
13. **Prerequisites**: -
14. **Description of lectures**
The aim of the course is to apply the knowledge gained by the previous courses through the elaboration of an individual or group project. The students choose from an well described problem group of the automated vehicles, and after studying the problem, they design a solution for it. The elaboration of the task goes through the stages of specification, state of the art study, algorithm design, implementation, documentation and end-semester presentation. The classes of the projects aim the elaboration of the project, the supervision of the progress, and consultation.
15. **Description of practices**
16. **Description of laboratory practices**
During the lab exercises, the task is to consult with the instructor and check the progress.
17. **Learning outcomes**
a) Knowledge and Skills:
 - Capable of breaking down a project task into elements based on specification.
 - Is able to design a development process.
 - Is able to track and document a development process.
b) Attitude:
 - Open to self-development tasks.
c) Autonomy and responsibility:
 - Is able to make responsible decisions in a development project.
18. **Requirements, way to determine a grade (obtain a signature)**
The completed and documented work will be presented by the student at the end of the semester. The prerequisite of the exam is the successful fulfilment of the individual task.
19. **Retake and delayed completion**
The individual task cannot be delayed completed.
20. **Learning materials**
1. Subject name Automated vehicle design project

2. Subject name in Hungarian Autonóm jármű projektfeladat

3. Role mc

4. Code KOKAM710

5. Evaluation type e

6. Credits 6

7. Weekly contact hours 2 lecture 0 practice 2 lab

8. Curriculum A

9. Working hours for fulfilling the requirements of the subject 180 hours

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Midterm preparation</th>
<th>Homework</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 hours</td>
<td>0 hours</td>
<td>0 hours</td>
<td>64 hours</td>
<td>20 hours</td>
</tr>
</tbody>
</table>

10. Department Department of Control for Transportation and Vehicle Systems

11. Responsible lecturer Dr. Gáspár Péter

12. Lecturers Dr. Szalay Zsolt, Dr. Bécsi Tamás, Dr. Aradi Szilárd

13. Prerequisites (-), (-), (-), (-), (-)

14. Description of lectures

The aim of the course is to apply the knowledge gained by the previous courses through the elaboration of an individual or group project. The students choose from an well described problem group of the automated vehicles, and after studying the problem, they design a solution for it. The elaboration of the task goes through the stages of specification, state of the art study, algorithm design, implementation, documentation and end-semester presentation. The classes of the projects aim the elaboration of the project, the supervision of the progress, and consultation.

15. Description of practices

16. Description of laboratory practices

During the lab exercises, the task is to consult with the instructor and check the progress.

17. Learning outcomes

a) Knowledge and Skills:
 - Capable of breaking down a project task into elements based on specification.
 - Is able to design a development process.
 - Is able to track and document a development process.

b) Attitude:
 - Open to self-development tasks.

c) Autonomy and responsibility:
 - Is able to make responsible decisions in a development project.

18. Requirements, way to determine a grade (obtain a signature)

The completed and documented work will be presented by the student at the end of the semester. The prerequisite of the exam is the successful fulfillment of the individual task.

19. Retake and delayed completion

The individual task cannot be delayed completed.

20. Learning materials
1. Subject name: Automotive environment sensors

2. Subject name in Hungarian: Járműipari környezetérzékelés

3. Role: mc

4. Code: KOKAM708

5. Evaluation type: e

6. Credits: 5

7. Weekly contact hours: 2 lecture, 0 practice, 2 lab

8. Curriculum: A

9. Working hours for fulfilling the requirements of the subject: 150 hours

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Homework</th>
<th>Reading materials</th>
<th>Midterm preparation</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 hours</td>
<td>18 hours</td>
<td>0 hours</td>
<td>20 hours</td>
<td>20 hours</td>
<td>36 hours</td>
</tr>
</tbody>
</table>

10. Department: Department of Control for Transportation and Vehicle Systems

11. Responsible lecturer: Dr. Bécsi Tamás

12. Lecturers: Dr. Bécsi Tamás, Dr. Aradi Szilárd

13. Prerequisites: "(·), ·;

14. Description of lectures

The perception of the environment and the understanding of the situation is of high importance for the development of modern driver assistance systems as well as for the development of autonomous vehicle systems. To do this, one has to know the physical background, possibilities and limitations of the existing environmental sensors.

The course aims at the studying of the technologies developed for the tasks of environment sensing of an automated vehicle, the currently available technologies and the corresponding signal processing techniques.

First, the course introduces the inner sensors of the vehicles, such as position, velocity, translation or rotation, basics of their physical operation and their limitations. After this, the main principles of environment sensing, such as ultrasonic, radar, lidar and machine vision systems are introduced through application examples. To strengthen the robustness of the collected data, several typical sensor fusion techniques are also studied.

15. Description of practices

16. Description of laboratory practices

The aim of the laboratory practice is to develop different measurements and software processing tasks.

17. Learning outcomes

a) Knowledge:
- Is familiar with the sensors for measuring vehicle status, their operating principles.
- Is familiar with the sensors and possibilities and limitations of environmental sensors used today (Radar, Lidar, Ultrasound, Camera Systems).
- Is familiar with the sensory fusion techniques used in environmental sensing.
- Is familiar with the methods of processing the data of environmental sensors.

b) Skills:
- Can interpret the data of different sensors.
- Is able to design an algorithm for simple determination of the environmental situation based on sensor data.
- Is able to select an appropriate sensor architecture for the implementation of a designated driving support / autonomous vehicle function.

c) Attitude:
- Is interested in the latest trends of automotive sensors.
- Is interested in the algorithmization aspect of the sensor information processing tasks.

d) Autonomy and responsibility:
- Being able to work in a team responsibly to design an autonomous vehicle function.

18. Requirements, way to determine a grade (obtain a signature)

For signature: successful fulfilment of two midterm exams. Final grade is the average of the two midterm tests (25-25%) and the exam (50%).

19. Retake and delayed completion

One Midterm exam can be retried.

20. Learning materials

Lecture Notes
1. Subject name	**Automotive network and communication systems**
2. Subject name in Hungarian | Automatizált járművek kommunikációs rendszerei
3. Role | mc
4. Code | KOGGM709
5. Evaluation type | m
6. Credits | 4
7. Weekly contact hours | 2 lecture 0 practice 2 lab
8. Curriculum | A
9. Working hours for fulfilling the requirements of the subject | 120 hours
Contact hours | 56 hours Preparation for seminars 10 hours Homework 20 hours
Reading materials written | 34 hours Midterm preparation 0 hours Exam preparation 0 hours
10. Department | Department of Automotive Technologies
11. Responsible lecturer | Dr. Szalay Zsolt
12. Lecturers | Dr. Tihanyi Viktor
13. Prerequisites | - (-), -;
- (-), -;
- (-), -;
14. Description of lectures
The target is to present the communication systems of vehicles with advanced driver assistance systems. ECU level communications, communication types between ECU’s like CAN, LIN, MOST, FlexRay, Ethernet. Communication between vehicles, V2x. ADAS related localization and mapping systems and their communication protocols. Cyber security aspects. Electromagnetic compatibility. Diagnosis and testing and validation of communication systems. Topics include:

- Network and Communication systems introduction
- ECU level communications, UART, SPI, I2C, Parallel
- Communication between ECU, CAN
- Communication between ECU, LIN
- Communication between ECU, MOST
- Communication between ECU, Flexray
- Communication between ECU, Automotive Ethernet
- Vehicle level communication, V2x
- ADAS mapping communication
- Cyber security, Electromagnetic compatibility
- Diagnostics, Testing and validation of vehicle communication systems
15. Description of practices

16. Description of laboratory practices
The lab enables the practical implementation of individual student work. Some of the systems presented in the presentation are also presented in practice.
17. Learning outcomes
a) Knowledge:
- Knows the automotive communication systems. Knows the communication technologies of the automotive industry.
- Is familiar with the communication security issues of automotive systems.
- Knows electromagnetic compatibility issues of communication systems, their testing and validation.
b) Skills:
- Is able to use in-vehicle communication protocols. Is capable of designing appropriate communication interfaces.
- Can select a protocol for a particular autonomous vehicle function.
c) Attitude:
- Responsive to understanding new communication solutions.
d) Autonomy and responsibility:
- Takes responsibility of the work done.
18. Requirements, way to determine a grade (obtain a signature)
Individual homework which determines the final grade.
19. Retake and delayed completion
Delayed completion of individual homework.
20. Learning materials
Lecture Notes
1. Subject name | Automotive R&D processes and quality systems

2. Subject name in Hungarian | Autóipari K+F folyamatok és minőségügyi rendszerek
3. Role | oc
4. Code | KOGGM711
5. Evaluation type | m
6. Credits | 4
7. Weekly contact hours | 3 lecture, 0 practice, 0 lab
8. Curriculum | A

9. Working hours for fulfilling the requirements of the subject | 120 hours
| Contact hours | 42 hours | Preparation for seminars | 20 hours | Homework | 0 hours | Reading materials | 38 hours | Midterm preparation | 20 hours | Exam preparation | 0 hours |

10. Department | Department of Automotive Technologies
11. Responsible lecturer | Dr. Szalay Zsolt
12. Lecturers | Wahl István

13. Prerequisites | - (-), -;
- (-), -;
- (-), -

14. Description of lectures
The aim of the course is to familiarize students with the processes used in the automotive industry, research and development, and the relevant regulations. Students will gain insight into the standards and process models required by the automotive industry for development processes. Within the framework of the course, students can get acquainted with the individual elements of the flow, their structure and their relationships. In addition, students can learn about quality methods that support development.

- Presentation of the life cycle of vehicle development.
- Quality assurance during vehicle development, control points and models
- Product and process testing
- Automotive Qualification Management Standards, Audits (IATF16949)
- Software Development Processes, Graduation Models (Automotive SPICE)
- Manage your requirements
- Application of FMEA in product design
- Projektmenedzsment
- Change management
- Software development processes
- Testing processes
- Supplier quality control
- Configuration management

15. Description of practices
16. Description of laboratory practices
17. Learning outcomes
a) Knowledge:
- Is familiar with standard solutions for automotive research development processes, taking into account life cycle planning and quality assurance aspects. Knows the automotive quality management standards.
- Know project and change management processes. Is familiar with testing and supplier control processes.
b) Skills:
- Is able to engage in automotive development, understand its project structure.
- Is able to design and implement a project management project for automotive development.
c) Attitude:
- Open to work on a project-based approach. Open to work in team.
d) Autonomy and responsibility:
- Responsible for the work done.

18. Requirements, way to determine a grade (obtain a signature)
One midterm exam, which determines the final grade.

19. Retake and delayed completion
The midterm exam can be retried once.

20. Learning materials
Lecture Notes
Subject description

1. Subject name | **Automotive vehicle systems**
---|---
2. Subject name in Hungarian | Közúti járművek szerkezettaná
3. Role | oc
4. Code | KOGGM712
5. Evaluation type | m
6. Credits | 4
7. Weekly contact hours | 2 lecture 0 practice 1 lab
8. Curriculum | A

9. Working hours for fulfilling the requirements of the subject | 120 hours
---|---
Contact hours | 42 hours
Preparation for seminars | 10 hours
Homework | 20 hours
Reading materials written | 28 hours
Midterm preparation | 20 hours
Exam preparation | 0 hours

10. Department | Department of Automotive Technologies
11. Responsible lecturer | Dr. Zöldy Máté
12. Lecturers | Nyerges Ádám

13. Prerequisites | - (-), -
- (-), -

14. Description of lectures
The target of the subject is to present the vehicle systems and structures. Within the framework of the subject the vehicle engines, transmissions, suspension systems, brake systems and frame structures are taught. In the Autonomous Vehicle Control Engineers MSc tematics, the target of the subject is to catch up the students, who do not have vehicle engineer BSc. By the subject the students are able to recognise the important parts and systems of road vehicles, they know their function and operation.

Structures of road vehicles, vehicle categories according to UN, elements and orientation of the transmission system. The types and the operation of internal combustion engines, fuels, emission. The geometry of the cranktrain, the indicator diagram, the power, the torque, the efficiency and the fuel consumption of the internal combustion engines. Structure of internal combustion engines, lubrication system, cooling system. Fuel systems and charging of internal combustion engines. Wheel dimensions, tyre parameters, suspension geometry, Ackermann governing. Structure an operation of clutches and manual transmissions. Dual clutch transmissions, hydrodinamical clutch and gearboxes. Planetary gear. Automatized and automatic transmission systems. Final gears, differentials, wheel bearings. Types of suspension systems, shock absorbers. Hydraulic brake systems, ABS. Air brake systems. Frameworks and structures of road vehicles, passive safety systems.

15. Description of practices

16. Description of laboratory practices

17. Learning outcomes
a) Knowledge:
- Knows the basic structure of road vehicles.
- Knows the operation of the internal combustion engine, its lubrication and cooling systems, and processes.
- Knows the indicator diagram, performance and efficiency of internal combustion engines.
- Knows the basic wheel models and the Ackermann steering.
- Is familiar with the basic structure and operating principles of knobs and transmissions.
- Knows the types and operating principles of automated transmissions.
- Is familiar with the models describing the types of running gear and their general operation.
- Is familiar with the principles and operation of braking systems.
- Knows the basic passive safety solutions.

b) Skills:
- Is able to test and evaluate the basic systems of vehicles.
- Is able to perform simple vehicle diagnostic tasks in case of appropriate model-specific further education.
- Is capable of creating the operating models of various vehicle elements.
- Is capable of jointly examining vehicle structure models, modeling a complete drive chain.

c) Attitude:
- Strives to better understand vehicle structures, research and explore new solutions.
- Open to technical approaches to problems and tasks raised by new systems.
- Is able to carry out the assigned tasks in a team.

d) Autonomy and responsibility:
- Is able to independently model an unknown vehicle structure solution.
- Can independently process vehicle diagnostic results. Is responsible for evaluating a diagnostic measurement task.
18. **Requirements, way to determine a grade (obtain a signature)**

The semester mark reflects the results of the two midterm tests and the homework (1/3-1/3-1/3 weight). Participation in the lab, the two successful midterm tests and the accepted homework are the prerequisite for fulfilling the subject.

19. **Retake and delayed completion**

One midterm test can be retried, tasks must be given accurately.

20. **Learning materials**

- Automotive Engines and Testing note
- Automotive Engines I-II. note
- Vehicle Power Transmission Note I.
- Vehicle Suspension I-II. note
1. Subject name
Autonomous robots and vehicles

2. Subject name in Hungarian
Autonóm robotok és járművek

3. Role
mc

4. Code
VIIIMA12

5. Evaluation type
e

6. Credits
4

7. Weekly contact hours
2 lecture 1 practice 0 lab

8. Curriculum
A

9. Working hours for fulfilling the requirements of the subject
120 hours

Contact hours: 42 hours
Preparation for seminars: 15 hours
Homework: 0 hours
Reading materials: written
Midterm preparation: 15 hours
Exam preparation: 48 hours

10. Department
Department of Control Engineering and Information Technology

11. Responsible lecturer
Dr. Kiss Bálint

12. Lecturers
Dr. Lantos Béla, Dr. Harmati István

13. Prerequisites
- (), -;
- (), -;
- (), -

14. Description of lectures
The subject summarizes the theoretical and practical fundamentals of the modeling, control and intelligent architectural realization methods of robotic and autonomous systems. The subject provides concepts and system engineering background for maintenance and development engineers of such systems. Robotized manufacturing cells, widely used robot structures and the typical programming methodology of robotic arms are presented. Robot modeling, navigation and motion planning methods are studied. Special emphasis is put on the real-time control methods of robot arms and mobile platforms. Possibilities of the cooperation of wheeled and legged mobile robots are enumerated. Current control and navigation challenges are overviewed.

Students successfully completed the course requirements will have an in-depth understanding of the modelling, real-time control and navigation solutions employed in robotics so that he or she can creatively employ and complement them as necessary in the case industrial applications (e.g. automotive and robotics).

15. Description of practices
Classroom exercises demonstrate the application of theoretical material through case studies.

16. Description of laboratory practices
-

17. Learning outcomes
a) Knowledge:
- Is familiar with the theoretical and practical foundations of modeling, control and intelligent system engineering of robotic and autonomous systems. Knows the dynamic models of mechatronic systems.
- Knows the robotic and kinematic models of robots. Knows robot programming and robot control systems.
- Is familiar with intelligent actuators and their use in vehicle control.

b) Skills:
- Is able to design and implement robot control on the systems it knows.
- Is able to design and implement trajectory planning and execution tasks.
- Capable of mathematical and physical modeling of robot and autonomous vehicle systems.

c) Attitude:
- Is interested in novel solutions for autonomous movements and controls.

d) Autonomy and responsibility:
- Independently capable of performing mechatronic design tasks.
- Is able to get to know an unknown system, acquires robot programming environments in autodidact.

18. Requirements, way to determine a grade (obtain a signature)
a. During the period of classes: successful midterm exam (at least pass grade). The result of the midterm exam count for the exam grade with up to 20%. Requirement for signature: the result of the midterm exam is at least 2 (pass).
b. During the period of exams: no exam is possible without the signature. The exam is written composed of theoretical questions and exercises.

19. Retake and delayed completion
The mid-term can be repeated once during the period of classes and once during the repeat period.

20. Learning materials
Lantos-Kiss-Harmati: Autonomous robots and vehicles handouts (electronically)
Lantos-Márton: Nonlinear Control of Vehicles and Robots (Springer, 2011)
Somló-Lantos-Cat: Advanced robot control (Akadémiai Kiadó, 1997)
Subject description

1. Subject name | Computer Vision Systems
2. Subject name in Hungarian | Számítógépes látórendszer
3. Role | mc
4. Code | VIIIMA07
5. Evaluation type | e
6. Credits | 4
7. Weekly contact hours | 2 lecture, 1 practice, 0 lab
8. Curriculum | A
9. Working hours for fulfilling the requirements of the subject | 120 hours
 - Contact hours | 42 hours
 - Preparation for seminars | 10 hours
 - Midterm preparation | 20 hours
 - Exam preparation | 48 hours
10. Department | Department of Control Engineering and Information Technology
11. Responsible lecturer | Dr. Vajta László
12. Lecturers | Dr. Vajta László, Szemenyei Márton
13. Prerequisites | -(·), ·;
 - (·), ·;
 - (·), ·;
14. Description of lectures
 Along with the development of computer technologies, automatic evaluation of visual content became a daily practice on areas of quality control, process control, navigation, security systems, medical diagnostics, and many more. The aim of the course is to provide an introduction of the principles and applications of advanced computer image processing and visualisation, covering virtual technologies which are playing a key role in the management of supervised autonomous industrial processes.
15. Description of practices
 In the exercises, examples and case studies are deepened into the theoretical curriculum of the lectures.
16. Description of laboratory practices
 -
17. Learning outcomes
 a) Knowledge:
 - Is familiar with the mathematical and physical descriptive theories and practical implementations of image recognition and imaging.
 - Knows the tools of the description, the methods of geometric description of the image details.
 - Know basic image processing algorithms.
 - Is familiar with image filtering technologies, segmentation and object recognition methods.
 b) Skills:
 - Can independently design image processing algorithms.
 - Be able to apply the development environments used in industry.
 - Is capable of performing object recognition and tracking tasks.
 c) Attitude:
 - Motivated to learn new results in the ever-developing field of image processing.
 - Is motivated to apply the acquired knowledge to the development of advanced automated vehicle functions.
 d) Autonomy and responsibility:
 - Can independently interpret and learn new results of image processing.
 - Is able to independently use the use of a visual system development environment.
18. Requirements, way to determine a grade (obtain a signature)
 One midterm exam with the minimum requirement of 40%. The midterm gives 20% of the final grade
19. Retake and delayed completion
 The midterm exam can be retried once.
20. Learning materials
 Lecture Notes
 John C. Russ: The Image Processing Handbook
 Computer Vision online tananyag: http://www.dai.ed.ac.uk/CVonline/
Subject description

1. Subject name
Control theory and system dynamics

2. Subject name in Hungarian
Irányításelmélet és rendszerdinamika

3. Role
mc

4. Code
KOKAM701

5. Evaluation type
e

6. Credits
4

7. Weekly contact hours
2 lecture 0 practice 2 lab

8. Curriculum
A

9. Working hours for fulfilling the requirements of the subject

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Homework</th>
<th>Reading materials</th>
<th>Midterm preparation</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 hours</td>
<td>10 hours</td>
<td>0 hours</td>
<td>27 hours</td>
<td>12 hours</td>
<td>15 hours</td>
</tr>
</tbody>
</table>

10. Department
Department of Control for Transportation and Vehicle Systems

11. Responsible lecturer
Dr. Bokor József

12. Lecturers
Dr. Gáspár Péter, Dr. Németh Balázs

13. Prerequisites
- (-), -;
- (-), -;
- (-), -;

14. Description of lectures
The course aims the study of the analytical and control design methods of electromechanical systems. First, the modeling paradigms and state space representations are outlined. After this, system analysis is presented, such as controllability, observability and stability. Through the control design problem, the course examines the different qualitative properties, and the consideration techniques of system uncertainties and disturbances. From the classical methods, the pole allocation and the quadratic linear control is presented. The course focuses on the interpretation of the observer design and the separation principle. Course thematic:

- System modeling based on physical principles, Analysis in time and frequency domain,
- State space of dynamic systems,
- Quantitative properties and stability analysis of closed loop systems,
- Properties of state space representations,
- Controllability and observability of state space representations,
- Compensator design, Full state feedback with pole allocation,
- Controller design with linear quadratic method, Separation principle and observer design.

15. Description of practices

16. Description of laboratory practices
In the laboratory practice the computerized implementation and evaluation of the known control theory models and algorithms is performed.

17. Learning outcomes

a) Knowledge:
- Knows the basic dynamic system modeling paradigms, their mathematical background.
- Knows the time and frequency domain description of linear time-variant systems.
- Knows the principles of feedback control, and the quantitative and qualitative criteria. Knows the state space of theory.
- Is familiar with various simple feedback control methods.
- Knows the basics of modern control theory, the principle of quadratic regulation. Knows the methods of observer design.

b) Skills:
- Is able to independently design a specific system model. Be able to apply the control design methods independently.
- Is able to use the most popular softwares on the field.

c) Attitude:
- Is interested in a mathematical solution to control problems. Acquires system-level thinking.

d) Autonomy and responsibility:
- Can independently provide quality and quantity parameters for a system's performance, enabling them to make decisions about system redesign.
- Can independently describe a particular system, use the appropriate mathematical formalisms.
- Is able to make decisions on the appropriate methods of solving the control task.

18. Requirements, way to determine a grade (obtain a signature)
One midterm exam, which is successful if 50% of its points are reached. The mark of the course depends on the result of the midterm exam (50%) and on the result of the successful written final exam (50%). The final exam is successful, if 50% of its points are reached.

19. Retake and delayed completion
The midterm exam can be retried once.

20. Learning materials
Lecture Notes
Design and integration of embedded systems

Rendszertervezés és -integráció

mc

VIMIMA11

e

2 lecture 1 practice 0 lab

A

120 hours

42 hours

14 hours

0 hours

24 hours

40 hours

Department of Measurement and Information Systems

Dr. Majzik István

Scherer Balázs

The role of development processes, life cycle models, and quality assurance in system design. The basics of CMMI.

Project planning, Management of requirements, versions, and configurations. Exercise: Requirements management and traceability, version control and configuration control methods. Among system development methods, the subject presents the hardware-software co-design and component integration techniques, based on the previously studied technologies and building blocks, emphasizing also the model-based design approaches.

The subject also covers the specific design methods for safety-critical embedded systems in which the malfunctions may lead to hazards, or in case of given environmental conditions even to accidents or damages. Such safety-critical systems are used for example in transportation, vehicles, medical equipment or process control systems. The students will familiar with the architectural concepts (that are often referred in related standards), the techniques of safety and dependability analysis (that are needed to assess the design decisions), as well as the techniques of systematic verification. The exercises present concrete tools and techniques to support the typical tasks in requirement management, configuration control, source code analysis, unit testing, integration testing, system testing, hazard analysis and model based design.

- The role of development processes, life cycle models, and quality assurance in system design. The basics of CMMI.
- Project planning. Management of requirements, versions, and configurations. Exercise: Requirements management and traceability, configuration and version control systems (e.g., DOORS, SVN, Trac).
- The steps of the development process according to the V-model. Requirement analysis.
- Design of logical and technical architectures. Hardware-software co-design. Model based design (e.g., Simulink, Stateflow). Specification, design, implementation and integration of hardware and software components. Peculiarities and constraints that characterise the design of embedded systems.
- Checking of requirements and designs; General expectations, the basic criteria for completeness, consistency and testability. Source code analysis (searching for fault patterns, checking of coding rules). Exercise: Source code checking by static analysis. Generation of documentation (e.g., DoxyGen).
- Overview of the basic concepts of testing (the ISTQB recommendations). Unit testing using specification based (functional, black-box) and structure based (white-box) testing methods. Test coverage metrics and test quality characteristics. The model based testing approach. Exercise: Unit testing. Measuring of the test coverage.
- Integration and system testing: Bottom-up and top-down incremental testing. The typical methods of system testing and validation testing. Monitoring and debugging.
- Integration testing using model-, software-, processor-, and hardware-in-the-loop (MIL, SIL, PIL, HIL) methods. Exercise: Construction of a HIL testing environment. Application of a typical HIL testing framework (e.g., NI VeriStand).
- The basic concepts of system and software safety: Accident, risk, safety, the safety integrity level (SIL). The definitions and attributes of reliability, availability and safety. Exercise: Specification of safety requirements. The development standards for safety critical systems (based on IEC 61508).
- The principles and typical solutions of architecture design in safety critical systems: The general conditions of safe behaviour in case of faults. Architecture design patterns in case of fail-stop and fail-operational behaviour.
- Fault tolerance in case of transient and permanent hardware faults (TMR, NMR, software based solutions for error detection and recovery). Fault tolerance in case of software design faults (N-version programming, recovery blocks). The time and resource needs of the different solutions. Exercise: The application of architecture design patterns. Architecture design using modelling tools. The architecture of a SCADA system (case study).
- Hazard analysis methods for the assessment of design decisions; The overview of the typical techniques for hazard analysis. Qualitative and quantitative techniques: Fault tree, event tree, cause-consequence analysis, FMEA, FMECA. Construction of a risk matrix on the basis of the hazard analysis. Overview of the generic risk reduction techniques.
15. Description of practices

The lab presents the material of lectures through specific tools.

16. Description of laboratory practices

-

17. Learning outcomes

a) Knowledge:
 - Knows the methods of systematic planning of embedded systems.
 - Knows the methods of model-based beating.
 - Knows the basic principles of safety critical systems.
 - Is familiar with the security and reliability analysis of design decisions and the methods of systematic verification.

b) Skills:
 - Capable of using model-based design software.
 - Is able to use architectural design patterns.
 - Capable of source code verification by static analysis.

c) Attitude:
 - Open to implement secure software acquisition tasks.

d) Autonomy and responsibility:
 - Can independently design safety-critical embedded software.

18. Requirements, way to determine a grade (obtain a signature)

During the semester: Solution of an assigned homework, applying the system design and verification methods presented during the lectures. The successful completion of the homework is required for the signature.

19. Retake and delayed completion

The homework can be submitted during the repetition period. The submission of the homework cannot be replaced by a midterm exam.

20. Learning materials

Subject description

1. Subject name: **Embedded Operating Systems and Client Applications**

2. Subject name in Hungarian: Beágyazott operációs rendszerek és kliens alkalmazások

3. Role: oc

4. Code: VIAUAC07

5. Evaluation type: e

6. Credits: 4

7. Weekly contact hours: 2 lecture, 1 practice, 0 lab

8. Curriculum: A

9. Working hours for fulfilling the requirements of the subject: 120 hours

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Homework</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 hours</td>
<td>14 hours</td>
<td>0 hours</td>
<td>48 hours</td>
</tr>
</tbody>
</table>

10. Department: Department of Automation and Applied Informatics

11. Responsible lecturer: Dr. Tevesz Gábor

12. Lecturers: Dr. Tevesz Gábor, Benedek Zoltán, Szabó Zoltán

13. Prerequisites:

- C, C++, C#
- Python, Java, .NET
- Operating systems, programming paradigms

14. Description of lectures

The students will be able to understand and make use of the basic concepts of embedded operating systems. The objective of the course is to present platforms, techniques and tools which are required to create and run both application and system level software for embedded systems. After creating the hardware unit and embedded programs for it, the next natural step is the implementation of a desktop or web application that enables monitoring and parameterizing the hardware unit from a standard PC. Mobile applications are becoming more widely used as well. The course presents the programming of desktop and web based client applications, focusing on user interfaces, graphics drawing tools, multithreaded and network programming. Most modern development platforms follow object-oriented concepts. Consequently, the course provides introduction to object-oriented design, basic UML and a few architectural and design patterns. Students will be able to develop desktop and thin client applications to access hardware units from PCs, and to create user friendly user interfaces for different client types. Network programming also gets an important role. The topics covered are illustrated by case studies and demo applications.

15. Description of practices

In the exercises, examples and case studies are deepened into the theoretical curriculum of the lectures.

16. Description of laboratory practices

-

17. Learning outcomes

a) Knowledge:
- Is familiar with the basic concepts and paradigms of basic embedded operating systems.
- Know the programming methods for thick and thin clients. Knows the basics of mobile client development.
- Knows the steps of object-oriented software design and modeling. Knows architectural and design patterns.

b) Skills:
- Can produce thin and thin client applications. Can create mobile client applications.
- Can create a user interface for these platforms.
- Can use known and well-established communication solutions.

c) Attitude:
- Is interested in client programming solutions.

d) Autonomy and responsibility:
- Able to learn independently on new platforms.
- Is capable of independently performing software engineering tasks to communicate with embedded operating systems.

18. Requirements, way to determine a grade (obtain a signature)

In lecture term: An in-class term test. In examination period: Written exam; Pre-exam: upon request

The requisite of the mid-term signature is to attend at the in-class term test and have at least satisfactory result. The requisite of attending at an exam is having the mid-term signature. The credits can be obtained by reaching at least satisfactory result at the exam. The grade consists of two parts: the grade of the mid-term test (25%) and the grade of the exam (75%).

19. Retake and delayed completion

One Midterm exam can be retried.

20. Learning materials

MSDN:.NET Framework Programming
High performance microcontrollers and interfaces

Nagyteljesítményű mikrokontrollerek és interfészek

Rozeta

VIAUMA07

mc

e

A

120 hours

42 hours

15 hours

0 hours

15 hours

48 hours

Department of Automation and Applied Informatics

Dr. Tevesz Gábor

Dr. Gál Tibor, Kiss Domokos

- (-), -;
- (-), -;
- (-), -;

Wide inside is given of the computer system architectures, high performance microcontroller architectures and their building blocks. Conventional architectures are analyzed then special architectures (ARM, DSP, network and graphic processors, GPGPU) are dealt with and compared with the SoC devices with soft and hard processors. Methods increasing the performance, security and reliability, decreasing power consumption are treated. Mechanical, electrical and logical aspects of bus systems connecting parts of control systems are treated in detail. Diagnostic methods of WEB, mobile, etc. based control systems are also introduced.

Modern processor and computer architectures (2 weeks)

Instruction set, micro and computer architectures. General characteristics, characteristics of a good architecture, aims of architecture development, design levels, virtual machines. Decreasing conception gap, high level languages. Computer and processor generations. Increasing the performance: conventional, pipelined, superscalar and VLIW architectures. Parallel processor performance. Performance of scalar and superscalar pipelined processors. Arithmetic and instruction pipelines. Data and control dependencies, branch prediction. Advanced technologies (multiple threads and cores, virtualization, advanced configuration and power management, reliable execution environment, client diagnose and repair, advanced vector supplement, etc.)

Special purpose processors (2 weeks)

ARM, signal, network, graphics, media, cell processors and general purpose graphics processor units. ARM micro and instruction set architectures, architecture specific profiles, CPU operating modes, coprocessors, ISA and micro architecture types (DSP and SIMD extensions, Jazelle, Thumb, Thumb-2, VFP, NEON, TrustZone, virtualization).

Characteristics of signal processing, appropriate ISA and micro architectures. Tasks of network processors, RTC and pipelined model. Graphics display resolution, color depth, speed, functionality. 2D and 3D graphics, graphics pipeline.

General characteristics of media processors, the Texas TMS320DM6467 digital media processor.

Microarchitectures, programming models and application areas of cellprocessors.

GPGPU programming principles, GPGPU methods (mapping, reduction, distribution, collection, searching, etc.) and principles.

Multiprocessor systems (1 week)

Classification, mechanical, electrical and logical characteristics. Transaction, arbitration, data transfer and addressing. Synchronous, semi synchronous and asynchronous busses. Asymmetric and symmetric signaling systems and circuits. Reflections, metastability and live insertion. Widely used bus systems: PCI, PCIe, SATA, USB, Thunderbolt.

RTL based synthesis (1 week)

Survey of Verilog. Synthesizable and non-synthesizable RTL. Comparing RTL and SW. Implementation of simple handshaking and LocalLink protocol (Xilinx), Verilog description of data source and data sink. Classical and Verilog based design of a combined arbiter. Verilog based design of a graphics display using FPGA-RAM hardware.

Programmable logic devices (1 week)

Main characteristics of Xilinx, Altera és Cypress programmable logic devices. System on Chip (SoC) (2 weeks)

Classification: programmable/non-programmable devices, soft and hard processor cores. Methods and devices of development, IP devices with fix and variable parameters. Components of SoC, block diagram/logic circuit diagram/Verilog description: switches, LEDs, programmable IO, IO blocks, IO networks, RAM blocks, counter/timer blocks, interrupt controllers, arbiters, DMA controllers, simple processors, canonical D8/A16 microcomputer, basic microcontroller and standard SoC busses. WEB, mobil, etc. based control and diagnostics (1 week)

Connection methods with WEB and mobile. Remote control and diagnostics.
15. Description of practices

The exercises will be exemplified in the form of examples and case studies in the theoretical curriculum of the lectures.

16. Description of laboratory practices

17. Learning outcomes

a) Knowledge:
- Knows modern processor architectures.
- Is familiar with modern microcontroller interfaces and bus networks.
- Knows the programmable logic tools.
- Knows integrated and embedded systems.

b) Skills:
- Is able to select a system with the right performance, consumption and proper interfaces for a given task.
- Can design and implement communication structures on microcontrollers.
- Can design and implement simple functions in a microcontroller environment.

c) Attitude:
- Open to new processor technologies and communication interfaces.
- Endeavor to select the appropriate tools and program design at a high level.

d) Autonomy and responsibility:
- Independently learn how to operate, develop and program an unknown processor family.
- Is able to view, test and improve software implemented by others.

18. Requirements, way to determine a grade (obtain a signature)

In lecture term: An in-class term test
In examination period: Written exam
Pre-exam: upon request

The requisite of the mid-term signature is to attend at the in-class term test and have at least satisfactory result. The requisite of attending at an exam is having the mid-term signature. The credits can be obtained by reaching at least satisfactory result at the exam.

19. Retake and delayed completion

The midterm exam can be retried once.

20. Learning materials

Gál T.: Interfésztechnikák. SZAK Kiadó, 20-
Gál T.: Nagyteljesítményű mikrokontrollerek (Electronis textbook - in Hungarian). BME AUT, 20-
Human factors in traffic environment

1. Subject name

2. Subject name in Hungarian

3. Role

4. Code

5. Evaluation type

6. Credits

7. Weekly contact hours

8. Curriculum

9. Working hours for fulfilling the requirements of the subject

10. Department

11. Responsible lecturer

12. Lecturers

13. Prerequisites

14. Description of lectures

The purpose of the subject is to present the human factors involved in transport. The following topics are of the utmost importance:

- Overview of human risk factors, basic concepts of transport, presentation of the test methodology of vehicle driving behavior and description of its models.
- Overview of human visibility, visual attention and search processes, in particular the overhead resulting from parallel processing.
- Human-specific aspects of spatial navigation. Factors permanently influencing information processing and decision-making mechanisms, eg. age and experience, personality traits, circumstance evaluation, driving style, and factors with a temporary effect, eg. substance abuse, distraction stimuli, tools, and tiredness psychological mechanisms.
- Psychological, cause analysis of traffic accidents.
- Describe the direct and associated human factors of accidents. The possibility of reducing the risk of accidents in human-machine interactions, avoidance, precautionary measures, and psychological aspects of safe driving.

15. Description of practices

-

16. Description of laboratory practices

-

17. Learning outcomes

a) Knowledge:

- Knows the basic human psychological concepts relevant to road traffic. Is familiar with the methodology and models of human-machine interactions, especially human behavior-related behavioral behavior. Knows the relevant physiological and psychophysical qualities and laws of human vision. Possesses basic psychological knowledge of attention. Is familiar with the human-specific psychological factors that are related or fundamentally affect the evaluation and decision-making mechanisms while driving. Knows the human psychological qualities that are decisive for behavior even in the social sphere, if we are part of the transport. Is familiar with the behavioral characteristics of other human agents involved in transport (not just the driver), their impact on road safety. Is familiar with the human aspects of basic traffic safety principles and the human-specific background factors of traffic accidents.

b) Skills:

- In engineering, always keeps in mind that the device / system you are working with will work under the partial / full control of another person whose innumerable predictable and even more unknown parameters may affect the use of the device and the effectiveness of the device. Is able to use the psychological literature of human-machine interactions with the appropriate expertise and critical. Is able to design a human experimental methodology that may be relevant in its engineering field, to design the experimental design. Uses sophisticated human-specific psychological knowledge when designing and testing operational processes and tools.

c) Attitude:

- Strives for a better understanding of the human factors relevant to transport, especially driving, researching and researching new solutions. Open to a human approach to the problems and tasks raised by new systems.

18. Requirements, way to determine a grade (obtain a signature)

Successful completion of two midterm tests. The final grade is the average of the two test results.

19. Retake and delayed completion

Both midterm exams can be retried once.

20. Learning materials

Subject description

1. Subject name

Legal framework of autonomous vehicles

2. Subject name in Hungarian

Autonóm járművek jogi keretei

3. Role

oc

4. Code

GT55M420

5. Evaluation type

m

6. Credits

2

7. Weekly contact hours

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Practice</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

8. Curriculum

A

9. Working hours for fulfilling the requirements of the subject

Total: 60 hours

- Contact hours: 28 hours
- Preparation for seminars: 0 hours
- Midterm preparation: 24 hours
- Exam preparation: 0 hours

10. Department

Department of Business Law

11. Responsible lecturer

Dr. Grad-Gyenge Anikó

12. Lecturers

Dr. Grad-Gyenge Anikó

13. Prerequisites

- (-), -
- (-), -
- (-), -

14. Description of lectures

The objective of the course is to introduce the students into the legal environment of the autonomous vehicles, including especially the basic principles and guidelines and the present and possible future framework of these laws.

Autonomous vehicles in the recent legal environment, esp. a) public law and private law questions. Autonomous vehicles in the private and public laws, legal frameworks of administrative laws, registrations, torts and product liability, warranty, software-law issues, risk-management, contract-management, insurance issues, b) Data protection (privacy) and data safety issues c) relevant criminal law issues. Autonomous vehicles in the recent legal environment. Criminal issues, and criminal liability

Autonomous vehicles in the Future. a) Types and definitions of autonomous and automated cars. Minimum requirements, technical compliance standards. b) Future use of autonomous cars and its possible effects on law - use in controlled environments, ride services, etc. c) Human - machine interface and its legal problems; new requirements - e.g. driving licence standards for the human "element" of the system.

15. Description of practices

-

16. Description of laboratory practices

-

17. Learning outcomes

a) Knowledge:

- Knows the basic directions of the autonomous regulatory environment of autonomous vehicles.
- Knows the basic administrative requirements of the legal environment.
- Is familiar with the fundamental private law (liability and contract law) related to autonomous vehicles.
- Is familiar with the fundamental data-law context of autonomous vehicles.
- Is familiar with the fundamental criminal relations related to autonomous vehicles.

b) Skills:

- Is able to navigate the regulatory context of autonomous vehicles, identify the main directions of the current legal environment.
- Is able to identify legal issues related to autonomous vehicles and to identify possible relationships.

attitude:

- Endeavor to take account of the legal context of autonomous vehicles, to identify legal risks and to determine compliance points for normative subsystems. Open to regulatory approaches to problems and tasks raised by new systems.
- Is able to perform the assigned tasks in a team.

d) Autonomy and responsibility:

- Is able to independently model a related legal problem.
- Is responsible for performing a legal analysis, taking into account the basic questions of the regulatory environment.
- In the performance of its tasks, strives for technical activity that meets the normative requirements.

18. Requirements, way to determine a grade (obtain a signature)

Successful completion of two midterm test. The final grade is the average of the two test results.

19. Retake and delayed completion

Both midterm exams can be retried once.

20. Learning materials

Lecture Notes
Verebics János – PéterváriKinga – Pázmándi Kinga: Law of Contracts (in Hungarian) (Budapest, February 2018)
Pétervári Kinga-Pázmándi Kinga - Ződi Zsolt: Autonóm járművek jogi keretei (in Hungarian) note, February 2018
Pétervári Kinga: A kereskedelmi szerződésekn joga (in Hungarian) (Typotex, 2015)
1. Subject name Localization and mapping

2. Subject name in Hungarian Helymeghatározás és térképezés

3. Role mc

4. Code EOFTMKO1

5. Evaluation type m

6. Credits 4

7. Weekly contact hours 2 lecture 0 practice 2 lab

8. Curriculum A

9. Working hours for fulfilling the requirements of the subject 120 hours

 Contact hours 56 hours
 Preparation for seminars 11 hours
 Midterm preparation 12 hours

 Reading materials written 21 hours
 Homework 20 hours
 Exam preparation 0 hours

10. Department Department of Photogrammetry and Geoinformatics

11. Responsible lecturer Dr. Barsi Árpád

12. Lecturers Dr. Barsi Árpád

13. Prerequisites

14. Description of lectures

Goal of the subject is to present the basics of positioning and localization, the map making procedure, the requirements against the maps, as well as the use of maps. During the semester the surveying methods, the basics of geoinformatics (GIS) and the modern map making is demonstrated. The students get knowledge about positioning and its accuracy measures by own conducted measurements. The latest map standards, the newest research results and the future trends are also presented.

15. Description of practices

- Individual laboratory measurements are performed by the students using different positioning tools, and after processing their measurement results, mapping is performed. Laboratory measurements include the evaluation of the results acquired and the determination of their accuracy characteristics.

16. Description of laboratory practices

- Individual laboratory measurements are performed by the students using different positioning tools, and after processing their measurement results, mapping is performed. Laboratory measurements include the evaluation of the results acquired and the determination of their accuracy characteristics.

17. Learning outcomes

a) Knowledge:
 - Knows the introductory basics of cartography. Know the common positioning technology.
 - Knows the principles of satellite positioning. Knows the basic principles of avigation.

b) Skills:
 - Is able to perform measurements with various positioning devices and evaluate them.
 - Is able to use mapping method from positioning data.

c) Attitude:
 - Open to new mapping and positioning methods. Open for use in positioning in technical tasks.

18. Requirements, way to determine a grade (obtain a signature)

Two midterm tests and an individual homework. Final grade is calculated as: 35% of the two tests and 30% of the homework.

19. Retake and delayed completion

One midterm test can be retaken, final deadline for the homework is the end of the delayed completion period.

20. Learning materials

Lecture Notes
Subject description

1. Subject name

Machine vision

2. Subject name in Hungarian

Gépi látás

3. Role

mc

4. Code

KOALM702

5. Evaluation type

m

6. Credits

4

7. Weekly contact hours

<table>
<thead>
<tr>
<th>Hours Type</th>
<th>Lecture</th>
<th>Practice</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

8. Curriculum

A

9. Working hours for fulfilling the requirements of the subject

- **Contact hours**: 56 hours
- **Preparation for seminars** 16 hours
- **Midterm preparation** 10 hours
- **Exam preparation** 0 hours

Total: 120 hours

10. Department

Department of Material Handling and Logistics Systems

11. Responsible lecturer

Dr. Szirányi Tamás

12. Lecturers

Dr. Szirányi Tamás

13. Prerequisites

- (·), ·;
- (·), ·;
- (·), ·

14. Description of lectures

Machine vision is the most important measure of intelligent road transport. Allows you to track the complex movement and traffic participants, continuously analyze situations and locations. The processing and semantic evaluation of the video stream extracted through the camera gives basic information to the autonomous driving. The subject is about capturing, analyzing and interpreting visual information: extracting high-level image descriptors from lower-level visual characteristics.

- Machine vision in the society of autonomous robots (e.g. autonomous driving): technology, devices, system requirements, software tools and environment; overview of main tasks and related mathematical and algorithmic background; summary of basic image processing methods applied in the following.
- Shape representation and description (regions, active contours, shape description, region decomposition, superpixel); definitions of shapes in 2D, 3D and 3D point-clouds.
- Scale Space axioms of image understanding (Lindeberg’s edge/ridge definition: multiscale segmentation and skeletonization, SIFT and similar feature detectors, anisotropic diffusion, RANSAC fitting)
- Energy optimization based image analysis (Markov Random Field, simulated annealing, region segmentation) for remote sensing and change detection; MRF as preprocessing in motion segmentation and active layer in Deep Convolutional Neural Nets.
- Deconvolution: Wiener filter, iteration based deconvolution, and Bayesian-based Lucy-Richardson blind-deconvolution, super-resolution.
- Video processing and analysis; Background/ foreground/ Shadow segmentation (mixture of Gaussian models, shadow models, foreground fitting); Motion Analysis (optical flow, interest point detection and tracking, video tracking);
- Pattern recognition in 2D and 3D (Statistical-, Neural-, Syntactic- pattern recognition, graph based comparison); Principal Component Analysis; Kernel Methods;
- Biometrical personal identification for human-computer interactions: face-, hand-, finger-, and gesture-recognition; camera-based eye-tracking and saliency definitions, attention detection in short;
- Image- and video-features; Generating and using annotated data sets: training-, test- and validation-sets. Content based image- and video-analysis, indexing and -retrieval; the curse of dimensionality;
- Reconstruction of the scanned environment from monocular and multiple-view vision; Image based Simultaneous Localization and Mapping (I-SLAM) for automatic driving localization.
- Multimodal/multiview fusion: fusion of sensors and cameras of different positions and spectra: optical-, infra- and depth-cameras. Motion tracking in multiple-view; Traffic surveillance and control from street cameras and on-board moving devices.
- Hidden Markov Models: speech and motion based recognition; pedestrian- and vehicle- detection and tracking; event detection: behaviour of the surrounding pedestrians and vehicles.
- Demonstration of the participants’ project development during the semester.

15. Description of practices

-

16. Description of laboratory practices

- Computer exercises; MATLAB programming.

17. Learning outcomes

a) Knowledge:
- Knows advanced image processing algorithms.
- Knows three-dimensional shape recognition methods.
Is familiar with environmental reconstruction technologies.
Is familiar with modern, neural network-based approaches to image processing.

b) Skills:
- Design of image object and shape recognition algorithm.
- Can see the architectural issues of a machine vision system.
- Is able to select a suitable tool and algorithm for a given task.

c) Attitude:
- Open to learn about modern vision systems.
- Open to automatic use of machine vision in vehicle control.

d) Autonomy and responsibility:
- Can participate in image processing projects independently or in a team.
- Is able to design a vision system that meets the given task and safety requirements.

18. Requirements, way to determine a grade (obtain a signature)
Requirements: continuous completion of lab tasks, two successful midterm tests and an accepted individual homework. Final grade is the average of the two midterm tests.

19. Retake and delayed completion
One midterm test can be retried, the homework can be delayed completed.

20. Learning materials
Lecture Notes
1. Subject name: Numerical methods

2. Subject name in Hungarian: Numerikus módszerek

3. Role: mc

4. Code: KOVRM121

5. Evaluation type: m

6. Credits: 4

7. Weekly contact hours: 2 lecture, 0 practice, 1 lab

8. Curriculum: AJK

9. Working hours for fulfilling the requirements of the subject
 Contact hours: 42 hours
 Preparation for seminars: 11 hours
 Midterm preparation: 12 hours
 Exam preparation: 0 hours

10. Department: Department of Aeronautics, Naval Architecture and Railway Vehicles

11. Responsible lecturer: Dr. Rohács József

12. Lecturers: Dr. Bicsák György

13. Prerequisites: - (), - (), - (), - ()

14. Description of lectures

15. Description of practices

16. Description of laboratory practices
MATLAB application of the introduced methods.

17. Learning outcomes
a) Knowledge:
 - Knowing the fundamentals of numerical approximation methods used in engineering instead of analytic algorithms. Knowing to find and apply the most suitable numerical method for a certain problem.

b) Skills:
 - Can implement different algorithms to a programming language and to find the best approximation method for a given mathematical problem.

c) Attitude:
 - Interested, responsive.

d) Autonomy and responsibility:
 - Can work individually and in teamwork.

18. Requirements, way to determine a grade (obtain a signature)
 2 midterm exams from the theoretical part, 50 points / exam. 1 project work for a group of 4-5 students, for n*100 points (n is the number of students). The points can be divided between the group members according to their wish. Grade calculation: summing all the points, the total points gives the final grade as follows: 0 – 79 · 1; 80 – 109 · 2; 110 – 139 · 3; 140 – 169 · 4; 170 – 5

19. Retake and delayed completion
Because of the point-collection system, no minimum points are determined for the midterm exams or for the project work. The retake possibilities are the following: on the replacement week the 1st midterm exam, or the 2nd midterm exam can be tried again for 50 points, or a combined 1st+2nd midterm exam retake for 100 points.

20. Learning materials
1. Subject name **Programming in C and Matlab**

2. Subject name in Hungarian **Programozás C- és Matlab nyelven**

3. Role **mc**

4. Code **KOKAM603**

5. Evaluation type **m**

6. Credits **4**

7. Weekly contact hours 2 lecture 0 practice 1 lab

8. Curriculum **AJ**

9. Working hours for fulfilling the requirements of the subject **120 hours**

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Homework</th>
<th>Reading materials</th>
<th>Midterm preparation</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 hours</td>
<td>0 hours</td>
<td>0 hours</td>
<td>24 hours</td>
<td>54 hours</td>
<td>0 hours</td>
</tr>
</tbody>
</table>

10. Department **Department of Control for Transportation and Vehicle Systems**

11. Responsible lecturer **Dr. Bécsi Tamás**

12. Lecturers **Dr. Bécsi Tamás, Dr. Aradi Szilárd, Törő Olivér**

13. Prerequisites
- `- (), ;`
- `- (), ;`
- `- (), ;`

14. Description of lectures
The subject aims the learning of the C and Matlab programming languages and environments. These tools aim the students in the implementation tasks required by other courses.

The goal on one hand is the introduction of the syntax of the two languages: Types, variables, data structures. Flow control, if-then, loops, functions, complex types and data structures. On the other hand, through the learning of syntax, the design and application of basic algorithm design paradigms is also studied.

15. Description of practices

16. Description of laboratory practices
In the laboratory practice, the goal is to learn the independent use of the syntactic and algorithmic design skills that are known at the lecture. In doing so, students learn the programming of languages through prepared examples in their development environments.

17. Learning outcomes

a) Knowledge:
- Knows the basic syntax and structure of the two programming environments.
- Knows how the types, operators, and basic instructions work.
- Is familiar with the process control principles and syntax of structured programs, branches, sequences, cycles.
- Know the complex data structures, their use.
- Knows the basic algorithm design paradigms.

b) Skills:
- Can write simple standalone programs in the two program languages concerned.
- Can implement informally or formally specified algorithms.
- Can program source code interpretation, error correction.
- Is able to test and optimize ready-made programs and modules.

c) Attitude:
- Is interested in modern IT solutions.
- Capable of algorithmic thinking that can be applied in other areas.

d) Autonomy and responsibility:
- In addition to known environments, it is able to acquire other unknown program languages and development tools in autodidact.
- Capable of designing and implementing software modules alone, responsibly.
- Is able to consult in a team in algorithmic and programming tasks, to make independent decisions.

18. Requirements, way to determine a grade (obtain a signature)
Two midterm exams. The final grade is the rounded average of the exams.

19. Retake and delayed completion
One midterm exam can be retried in the delayed completion period.

20. Learning materials
Lecture Notes, Dennis Ritchie: The C programming language, Matlab help
Subject description

1. Subject name
Project management

2. Subject name in Hungarian
Projektmenedzsment

3. Role
oc

4. Code
GT20M420

5. Evaluation type
m

6. Credits
2

7. Weekly contact hours
2 lecture, 0 practice, 0 lab

8. Curriculum
A

9. Working hours for fulfilling the requirements of the subject
60 hours

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 hours</td>
<td>0 hours</td>
<td>0 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading materials</th>
<th>Midterm preparation</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 hours</td>
<td>24 hours</td>
<td>0 hours</td>
</tr>
</tbody>
</table>

10. Department
Department of Management and Business Economics

11. Responsible lecturer
Dr. Sebestyén Zoltán

12. Lecturers
Dr. Sebestyén Zoltán

13. Prerequisites
- (-), -;
- (-), -;
- (-), -

14. Description of lectures

The subject introduces students with the terminology, basic tools and techniques related to project management. The curriculum briefly summarizes the basic knowledge needed to manage a project, in a structured way, to the extent of the subject.

Thematics:
- Introduction, Project Definition.
- Performers, contributors.
- Creating a demolition hierarchy.
- Application and transformation of direct and indirect prevention and follow-up lists.
- Analysis of activity-based nets, calculation of total project time. Activity and event times.
- Activity and event reserve times: full and spare time, calculation modes.
- Analysis of activity node nets, calculation of total project time.
- Activity and event reserve times: full and spare time. Rules for calculating reserve times.
- Multiple dependency relationships. There are four basic connections.
- Methods to reduce total project implementation time.
- Track time and money flow.

15. Description of practices

-

16. Description of laboratory practices

-

17. Learning outcomes

a) Knowledge:
 - Knows the phases of projects. actors, contributors.
 - Knows how to create a breakdown hierarchy.
 - Is familiar with the application and conversion of direct and indirect prevention and tracking lists.
 - Is familiar with drawing and dynamically analyzing the net, analyzing its basic data, and using it.
 - Know the methods of reducing the total project implementation time.
 - Knows the steps of project risk management.

b) Skills:
 - Is able to design and evaluate projects.
 - Is able to analyze, allocate resources in case of appropriate industry-specific further education.
 - Is able to manage different fields of expertise.

c) Attitude:
 - Strives for cost-effective planning and follow-up of the project.
 - Open and endeavor to approach the problems and tasks raised during the project management from a multidisciplinary perspective.
 - Is able to carry out tasks in a team.
d) Autonomy and responsibility:
 - Is able to independently produce the project's web design, its dynamics and analysis.
 - Is able to coordinate human resources responsibly to achieve the goal of the project.

18. Requirements, way to determine a grade (obtain a signature)

Successful completion of two midterm test. The final grade is the average of the two test results.

19. Retake and delayed completion

Both midterm exams can be retried once.

20. Learning materials

Project Management Body of Knowledge (PMBOK), PMI Standards Committee, 2013
Lockyer, K., Gordon, J. Project Management and Project Network Techniques, Prentice Hall, 2005
Subject description

1. Subject name
 Safety and reliability in vehicle industry

2. Subject name in Hungarian
 Biztonság és megbízhatóság a járműiparban

3. Role
 mc

4. Code
 KOKAM703

5. Evaluation type
 m

6. Credits
 3

7. Weekly contact hours
 2 lecture
 0 practice
 0 lab

8. Curriculum
 A

9. Working hours for fulfilling the requirements of the subject
 90 hours
 - Contact hours: 28 hours
 - Preparation for seminars: 28 hours
 - Reading materials: 0 hours
 - Midterm preparation: 15 hours
 - Homework: 19 hours
 - Exam preparation: 0 hours

10. Department
 Department of Control for Transportation and Vehicle Systems

11. Responsible lecturer
 Dr. Sághi Balázs

12. Lecturers
 Dr. Sághi Balázs

13. Prerequisites
 - (-), (-)
 - (-), (-)
 - (-), (-)

14. Description of lectures
 The aim of the course is to provide the students with theoretical and practical knowledge about the approach and methods for designing reliable, safe and secure vehicle systems. The task is to review the safety and reliability analysis methods used in the vehicle industry and to describe the safety standards for the automotive industry. The curriculum includes the introduction of the concepts of risk and risk analysis, basic concepts of safety and reliability, as well as an overview of reliability modeling techniques used in the vehicle industry, as well as a set of best practices for reliability and safety analysis. During the processing of the subject we pay attention to ISO 26262 for vehicle safety.

15. Description of practices
 -

16. Description of laboratory practices
 -

17. Learning outcomes
 a) Knowledge:
 - Knows the guidelines of the ISO 26262 standard for the automotive industry.
 - Is familiar with the concepts and mathematical apparatus of basic safety, risk and risk analysis.
 - Is familiar with the development methods of security-critical systems and security architectures.
 - Is familiar with the numerical descriptive tools of reliability and the related calculation methods.
 b) Skills:
 - Capable of performing safety calculations based on a specific specification.
 - Can perform risk analysis calculations.
 c) Attitude:
 - Is interested in the safety and risk issues of autonomous vehicles.
 d) Autonomy and responsibility:
 - Does its work in autonomous and responsible way.

18. Requirements, way to determine a grade (obtain a signature)
 Two midsemester exams (40-40%) and an individual homework (20%) and the final grade is the mean of the grades of the tasks.

19. Retake and delayed completion
 Both midsemester exams can be retried once. The individual task cannot be delayed completed.

20. Learning materials
 Lecture Notes
Subject description

1. Subject name: Signal processing fundamentals

2. Subject name in Hungarian: A jelfeldolgozás alapjai

3. Role: oc

4. Code: VIHIM009

5. Evaluation type: e

6. Credits: 4

7. Weekly contact hours: 4 lecture, 0 practice, 0 lab

8. Curriculum: A

9. Working hours for fulfilling the requirements of the subject: 120 hours

Contact hours: 56 hours
Preparation for seminars: 24 hours
Homework: 0 hours
Reading materials: 10 hours
Midterm preparation: 10 hours
Exam preparation: 20 hours

10. Department: Department of Networked Systems and Services

11. Responsible lecturer: Dr. Levendovszky János

12. Lecturers: Dr. Levendovszky János

13. Prerequisites: - (), -; - (), -; - (), -

14. Description of lectures
The course is concerned with laying down the foundations of signal processing with special emphasis of the representation of signals in different domains. The adaptive part help the students solve adaptive identification and equalization tasks. In this way, after successfully completing the course the students are capable of solving various signal processing tasks arising in different applications.

15. Description of practices

16. Description of laboratory practices
During the laboratory practice, the implementation of the known theoretical background and model testing are performed.

17. Learning outcomes
a) Knowledge:
 - Knows the importance of signal processing and its basic mathematical foundations.
 - Knows how to describe signals in time and frequency ranges.
 - Know the methods of describing digital signals.
 - Knows the steps of analog-to-digital conversion.
 - Knows digital filtering techniques.
 - Knows the methods of adaptive signal processing.

b) Skills:
 - Ability to represent, describe and interpret signals.
 - Capable of processing specific sequences.
 - Capable of analog and digital filter design.
 - Is able to use the acquired knowledge in system identification.

c) Attitude:
 - Open to understanding the mathematical foundations of signal processing.
 - Complex interpretation of measurements of open complex systems.

d) Autonomy and responsibility:
 - Independently suitable for performing and designing signal processing tasks.

18. Requirements, way to determine a grade (obtain a signature)

a. One mid-term test.
b. Condition for the signature is passing the test (scoring above 40%).

19. Retake and delayed completion
There is one possibility to repeat the mid-term test.

20. Learning materials
1. Subject name: Software Development Methods and Paradigms

2. Subject name in Hungarian: Szoftverfejlesztési módszerek és paradigmák

3. Role: oc

4. Code: VIAUMA00

5. Evaluation type: e

6. Credits: 4

7. Weekly contact hours: 2 lecture, 1 practice, 0 lab

8. Curriculum: A

9. Working hours for fulfilling the requirements of the subject: 120 hours

 Contact hours: 42 hours
 Preparation for seminars: 14 hours
 Midterm preparation: 10 hours

10. Department: Department of Automation and Applied Informatics

11. Responsible lecturer: Dr. Lengyel László

12. Lecturers: Dr. Lengyel László, Albert István

13. Prerequisites:

14. Description of lectures

The goal of this course is to teach the software development methodologies, their application possibilities and conditions, practices and tools required and preferred for the design and development of methods. Students become practiced in treating issues of common software architectures and software systems, furthermore, they will have a good knowledge related to software development methods. The course discusses the software development methodologies, the methods and techniques supporting methodologies and development processes, furthermore, practices, architectural requirements and solutions related to software systems.

- Effective use of development tools, learn best practices, build a variety of devices, major development, debugging, testing, mapping processes.
- Typical architectural expectations and possible solutions related to the project management methodologies, showing the advantages and difficulties in each direction.
- The manual application testing processes, methods, presentation of some assets. Guidelines for the preparation of unit tests, the conditions for the application, advantages and disadvantages.
- Source code management methods, widespread source code management tools, branching strategies, introduction of best practice guidelines for effective teamwork.
- Specification and business analysis methods: Structured Systems Analysis and Design Method (SSADM), requirements analysis, requirements specification, logical and physical planning, types of requirements, measurable objectives, prototypes, business analysis techniques, business processes and documentation requirements.
- Software Design methods: software design, UML, UML profile, description and communication of user requirements, architecture, design, Domain Driven Design, Model Driven Development
- User Experience design, typical process steps and best practices, role in the software development process, the user testing methods.
- Methodologies, classic methodologies: the software development process, software development models, Rational Unified Process (RUP), Capability Maturity Model Integration (CMMI)
- Agile development methods 1 (Agile values and principles) Why do we need methodologies?, managing change in the software industry, agile methods, values, principles, agile manifesto, agile practices.
- Agile development methods 2 (supporting the implementation practice): agile design, goals of design, levels of design, vision, release planning, iteration planning, stand-up. User stories, estimates, iteration, "done, done", Agile modeling.
- Agile development methods 3 (Agile methodologies): eXtreme Programming (XP), Scrum, Microsoft Solution Framework (MSF), characteristics of methodologies, their use in everyday life.
- Project management methods and tools 1: general project management principles, constraints, resources and competence matrices, tasks, dependencies. General description of project design tools.
- Project management methods and tools 2: specific characteristics of IT projects, agile and classic methodologies, resource and task management, monitoring, device support.
- Case studies: concrete case studies demonstrate the effective use of development tools, testing, source code management practices, collaboration tools. Experiences, best practices.

15. Description of practices

16. Description of laboratory practices

17. Learning outcomes

a) Knowledge:
 - Knows the architectural expectations and framework of software design.
 - Know the basic methods of software testing and source code management.
- Knows the agile development methods.
- Knows project management methods and tools, their specific IT features.

b) Skills:
- Can handle common architectural issues related to software systems.
- Is able to select the appropriate methods and solutions to follow the task.
- Capable of performing software testing tasks.

c) Attitude:
- Open to learning new development methods and environments.
- Suitable to work with the selected frames when working in different projects for different projects.
- Open for project-specific best practice.

d) Autonomy and responsibility:
- Can independently design a process.
- Can coordinate the work of a team and lead the development process.

18. Requirements, way to determine a grade (obtain a signature)
During the semester: one midterm exam. In the exam period: written exam. The midterm exam yields 40%, and the exam yields 60% of the final grade.

19. Retake and delayed completion
The midterm exam can be repeated during the repeat period in accordance with the Code of Studies and Exams.

20. Learning materials
James Shore: The Art of Agile Development, O'Reilly Media, 200-
Martin Fowler with Kent Beck, John Brant, William Opdyke, and Don Roberts: Refactoring (Improving the Design of Existing Code), Addison-Wesley, 199-
Kent Beck: Test Driven Development: By Example, Addison-Wesley, 200-
Martin Fowler: Domain-Specific Languages, Addison-Wesley Professional, 20-
Martin Fowler: Using an Agile Software Process with Offshore Development, Martinfowler.com
1. Subject name | Traffic modelling, simulation and control
---|---
2. Subject name in Hungarian | Járműforgalom modellezése, szimulációja és irányítása
3. Role | mc
4. Code | KOKAM704
5. Evaluation type | m
6. Credits | 4
7. Weekly contact hours | 2 lecture 0 practice 2 lab
8. Curriculum | A
9. Working hours for fulfilling the requirements of the subject | 120 hours
Contact hours | 56 hours
Preparation for seminars | 14 hours
Homework | 19 hours
Reading materials written | 16 hours
Midterm preparation | 15 hours
Exam preparation | 0 hours
10. Department | Department of Control for Transportation and Vehicle Systems
11. Responsible lecturer | Dr. Varga István
12. Lecturers | Dr. Tettamanti Tamás, Dr. Luspay Tamás
13. Prerequisites | (,), (,), (,)
14. Description of lectures | This subject gives a state-of-the-art introduction to road traffic automation and control. Students become familiar with the basic notions and theories, and get acquainted with the hardware/software architectures of road traffic control systems. Traffic detection technologies, road traffic controllers, as well as traffic control centers and monitoring systems are introduced. An introduction to the traffic modeling and traffic control theories are also provided. The students practice the basics of the traffic modeling through Matlab/Simulink and SUMO traffic simulator.
15. Description of practices |
16. Description of laboratory practices | Computer lab practices: micro. and macroscopic traffic modeling (MATLAB, SUMO).
Laboratory exercises: estimation of road parameters (smoothing, Recursive Least Square Estimator, Kalman Filter, MHE), model based control design (PID, LQ, MPC).
17. Learning outcomes | a) Knowledge:
- Is familiar with the structure and operation of traffic control systems.
- Knows the levels and methods of traffic modeling.
- Know the traffic management strategies, tools and software for urban transport.
- Knows the management solutions of public transport and highway systems.
b) Skills:
- Capable of modeling traffic on a given network.
- Is able to control a given subnet.
- Is able to use and design a form for measuring and estimating systems.
c) Attitude:
- Open to research on the joint system of traffic management and autonomous vehicles.
d) Autonomy and responsibility:
- Can independently design node controls.
18. Requirements, way to determine a grade (obtain a signature) | Requirements: successful completion (min. 50%) of the midterm and submission of one homework. Weights of requirements in the midterm grade: homework (1/3), midterm (2/3).
19. Retake and delayed completion | There is a retake option for the midterm and the homework can resubmitted upon request till the end of delayed completion period.
1. **Subject name**: Vehicle dynamics

2. **Subject name in Hungarian**: Járműdinamika

3. **Role**: mc

4. **Code**: KOGGM705

5. **Evaluation type**: e

6. **Credits**: 3

7. **Weekly contact hours**: 2 lecture 0 practice 1 lab

8. **Curriculum**: A

9. **Working hours for fulfilling the requirements of the subject**: 90 hours

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Midterm preparation</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 hours</td>
<td>0 hours</td>
<td>8 hours</td>
<td>10 hours</td>
</tr>
</tbody>
</table>

10. **Department**: Department of Automotive Technologies

11. **Responsible lecturer**: Dr. Szalay Zsolt

12. **Lecturers**: Vass Sándor

13. **Prerequisites**:

14. **Description of lectures**

The aim of the course is to familiarize students with the dynamic models of road vehicles. Within the scope of the course, students will be able to familiarize themselves with the various combined longitudinal and transverse vehicle dynamics models of vehicle and vehicle combinations, including tire models. The subject assumes basic mechanical mechanics of the vehicle, Vehicle behavior and stability issues. Modeling Basics. Modeling solo vehicles with a bike model. Modeling trailers with a bike model. Two-gauge four-wheeled vehicle model. Two-gauge four-wheeled vehicle model with trailer. Basic rubber modeling considerations. Tire brush model. The "Magic Formula" tire model. The "tight string" tire model. Analysis of three modern tire models. (RMOD-K, Fīre, MF-Swift)

15. **Description of practices**

16. **Description of laboratory practices**

Computer exercises; MATLAB and SIMULINK programming, implementation of vehicle models presented in lectures.

17. **Learning outcomes**

a) **Knowledge**:

- Knows the basic vehicle dynamics modeling paradigms.
- Is familiar with the dynamic behavior of vehicles, the terms used to describe them and their meaning.
- Knows different vehicle models. Knows the so-called bicycle model and bicycle model for trailer vehicles.
- Is familiar with two-track vehicle models and their trailer description.
- Is aware of the basic problems of vehicle-track connection.
- Knows the different wheel models, the Magic formula, the tight string, and the modern tire models.

b) **Skills**:

- Is capable of creating a vehicle dynamics model based on a specified vehicle description.
- Is able to apply vehicle dynamics models in design.
- Is able to select a model suitable for the specified vehicle control task.
- Is able to understand and use other vehicle models based on their knowledge.
- Capable of modeling the vehicle-track connection in a special environment.

c) **Attitude**:

- Open to the use of new vehicle dynamics models.
- Open to the combined use of vehicle dynamics and other knowledge.
- Collaborates with student peers and trainers to address various issues.

d) **Autonomy and responsibility**:

- Independently expand its knowledge in modeling IT solutions.
- Examines technical tasks in system-level thinking.
- Is responsible for performing a dynamic task entrusted to it, which provides support to its staff.

18. **Requirements, way to determine a grade (obtain a signature)**

One midterm exam and one individual homework. Final grade comes from the result of exam.

19. **Retake and delayed completion**

The midterm exam can be retried once or the individual homework can be delayed completed.

20. **Learning materials**

Subject description

1. Subject name
Vehicle mechanics fundamentals

2. Subject name in Hungarian
Járműmechanikai alapok

3. Role
oc

4. Code
KOOGM713

5. Evaluation type
e

6. Credits
4

7. Weekly contact hours
2 lecture 0 practice 1 lab

8. Curriculum
A

9. Working hours for fulfilling the requirements of the subject
120 hours

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>Preparation for seminars</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 hours</td>
<td>0 hours</td>
<td>20 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading materials</th>
<th>Midterm preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 hours</td>
<td>20 hours</td>
</tr>
</tbody>
</table>

10. Department
Department of Automotive Technologies

11. Responsible lecturer
Dr. Zöldy Máté

12. Lecturers
Vass Sándor

13. Prerequisites
- (-), -
- (-), -
- (-), -

14. Description of lectures
Introduction into the basics of vehicle dynamics. Description of motion equation of vehicles. Longitudinal, lateral and vertical dynamics of road vehicles. In the Autonomous Vehicle Control Engineers MSc tematics, the target of the subject is to caught up the students, who do not have vehicle engineer BSc. By the subject the students are able to analyse and modelling the dynamics of a vehicle.

The course starts with the basic definitions of vehicle dynamics, coordinate systems, simple vehicle motions. Starting with tyre dynamics the longitudinal and lateral slip conditions will be presented. The vehicle dynamics are separated to longitudinal, lateral and vertical behaviour. The longitudinal motion consists the acceleration performance and the brake dynamics. In lateral direction the low speed turning, the steady state cornering. As the vertical motion of the vehicle the ride behaviour is demonstrated as well. Motion equation are set up to describe the vehicle behaviour under different circumstances. Vehicle stability aspects.

15. Description of practices

16. Description of laboratory practices
In laboratory exercises, the theoretical background is studied through various models and its practical aspects.

17. Learning outcomes

a) Knowledge:
- Is familiar with the mathematical basis for vehicle dimensional modeling.
- Is familiar with simple description paradigms, coordinate systems, and descriptions of simple vehicle movements.
- Is familiar with basic length and transverse vehicle behavior.
- Knows the basics of vertical vehicle dynamics.
- Knows wheel models at an introductory level.
- Knows the limitations of modelling.

b) Skills:
- Is able to understand more complex vehicle dynamics models in later studies.
- Capable of modeling simple vehicle movements.
- I able to systematically view a vehicle dynamics model.

c) Attitude:
- Is interested in a more detailed description of vehicle movements.
- Endeavor to embrace technical approaches and thinking.
- Continually expanding its mathematical and modeling skills.

d) Autonomy and responsibility:
- Independently fulfills the responsible task.

18. Requirements, way to determine a grade (obtain a signature)
The prerequisite for obtaining the signature is the successful completion of the midterm test and individual student work. The final mark is determined by the written exam.

19. Retake and delayed completion
The midterm test can be retried once, tasks must be given accurately.

20. Learning materials
Lecture Notes
Subject description

1. Subject name

 Vehicle operation

2. Subject name in Hungarian
 Gépjárművek üzeme

3. Role
 oc

4. Code
 KOGGM174

5. Evaluation type
 e

6. Credits
 4

7. Weekly contact hours
 2 lecture 0 practice 1 lab

8. Curriculum
 A

9. Working hours for fulfilling the requirements of the subject
 120 hours

 Contact hours
 42 hours

 Preparation for seminars
 28 hours

 Midterm preparation
 10 hours

 Exam preparation
 28 hours

10. Department
 Department of Automotive Technologies

11. Responsible lecturer
 Dr. Szalay Zsolt

12. Lecturers
 Dr. Török Árpád

13. Prerequisites
 · () , ;
 · () , ;
 · () , ;

14. Description of lectures

15. Description of practices

16. Description of laboratory practices
 Vehicle Damage, Slip Brake Brake Test, Chassis Control, Adjustment, Wheel Balancing, Shock Diagnostic Methods, Engine Mechanical Status Diagnostics, Accident Data Recording Equipment (UDS) Data Processing, Presentation of Modern Diagnostic Station, where students become familiar with Periodic Technical Review Technology as described below:
 Identification, Testing of accessories, Checking of traction conditions, Devices for measuring noise and used diagnostic tests for establishing conditions of circulation.

17. Learning outcomes

 a) Knowledge:
 - Is familiar with the basic tasks, principles and methods of vehicle operation.
 - Is familiar with the maintenance, repair and wear and tear of the entire vehicle life cycle.
 - Knows vehicle diagnostic processes, methods, protocols.
 - Is familiar with modern testing methods, environmental compliance principles and regulations.
 - Acquire knowledge in various repair technologies.

 b) Skills:
 - Is able to interpret the results of different test methods.
 - Is familiar with the process of recording accident data and the associated processing process to perform such a task.
 - Is able to consult a specialist on various maintenance processes, to consider the risks.
 - Is able to participate in the design of a modern maintenance process.
 - Is able to perform planning tasks related to vehicle life cycle.

 c) Attitude:
 - Interested in vehicle operation.
 - Suitable for taking environmental concerns into account when designing.
 - Suitable for participating in a multi-field team.

 d) autonomy and responsibility:
 - Can assess the vehicle diagnostic results responsibly.
 - Can independently make decisions in vehicle maintenance decisions.

18. Requirements, way to determine a grade (obtain a signature)
 One midterm exam and individual lab works. The final grade is the result of the exam.

19. Retake and delayed completion
 In the delayed completion period the midterm exam can be retaken or one of the individual lab works can be completed.

20. Learning materials
 Lecture Notes
Subject description

1. Subject name: Vehicle testing and validation
2. Subject name in Hungarian: Közúti járművek tesztelése és validációja
3. Role: mc
4. Code: KOGGM406
5. Evaluation type: m
6. Credits: 3
7. Weekly contact hours: 0 lecture 0 practice 3 lab
8. Curriculum: A

9. Working hours for fulfilling the requirements of the subject:
 - Contact hours: 42 hours
 - Preparation for seminars: 18 hours
 - Midterm preparation: 10 hours
 - Homework: 0 hours
 - Exam preparation: 0 hours
 - Total: 90 hours

10. Department: Department of Automotive Technologies
11. Responsible lecturer: Dr. Zöldy Máté
12. Lecturers: Dr. Török Árpád

13. Prerequisites:
 - (\), -
 - (\), -
 - (\), -

14. Description of lectures
-

15. Description of practices
-

16. Description of laboratory practices
Introduction into the modern instrumental vehicle measurements. Acquisition of the usage of instruments, testing methods, and application of vehicle testing processes. In the Autonomous Vehicle Control Engineers MSc tematics, the target of the subject is to present to the students the testing procedures and possibilities of vehicle and software testing. By the subject the students are able to coordinate tests in simulation, laboratory and open road environment. Introduction of the basic measurement methods and instruments. Demonstration of different vehicle testing instruments. The subject goes through on the testing methods and tools different vehicle subsystem. Engine and driveline testing on modern engine test rigs demonstrates the dynamics, efficiency and emission of the powertrain. Brake system testing will be performed on both test benches and on a test track using a real vehicle according to the ECE directives. Suspension testing introduces both the passanger car suspension measurement methods, and the air spring system testing for heavy duty vehicles. Steering system testing is demonstrated as well. This course also shows different levels of testing: like laboratory tests on a subsystem of a vehicle, laboratory tests in simulation environment (HIL), laboratory tests on a real vehicle, and testing on test track. In addition the testing as a part of the V-model based development is also explained during this course. This course consists of laboratory exercises only, and is held at companies with th eprofile of modern development and testing.

17. Learning outcomes
a) Knowledge:
 - Is familiar with the operation of the dynamometer and the procedure for measuring it.
 - Is familiar with the principles of measuring the performance, dynamics and emissions of internal combustion engines and the standardized process of measurements. Knows the methods of measuring the suspension of passenger cars and commercial vehicles. Knows the different levels of vehicle system testing, laboratory, simulation, and test track measurements.
 - Is familiar with the V model-based development principles applied in the automotive industry.
b) Skills:
 - Is capable of performing individual test tasks after obtaining type knowledge.
 - Can take into account different expectations while planning.
 - Is able to evaluate diagnostic results. Is able to interpret the standards of international standards, to transpose them into practice.
c) Attitude:
 - Is interested in different testing processes. Is able to work in a team, in relation to the different automotive design paradigms.
d) Autonomy and responsibility:
 - The choice of self-diagnosing diagnostic methods for their application. The results obtained can be interpreted independently, responsibly, summarized and passed on. Is able to make repair and improvement decisions based on the interpreted results.

18. Requirements, way to determine a grade (obtain a signature)
The prerequisite for the completion of the subject is the successful completion of the midterm test and all laboratory requirements. Final mark reflects the result of the midterm test.

19. Retake and delayed completion
The midterm test can be retried once, tasks must be given accurately.

20. Learning materials
Lecture Notes